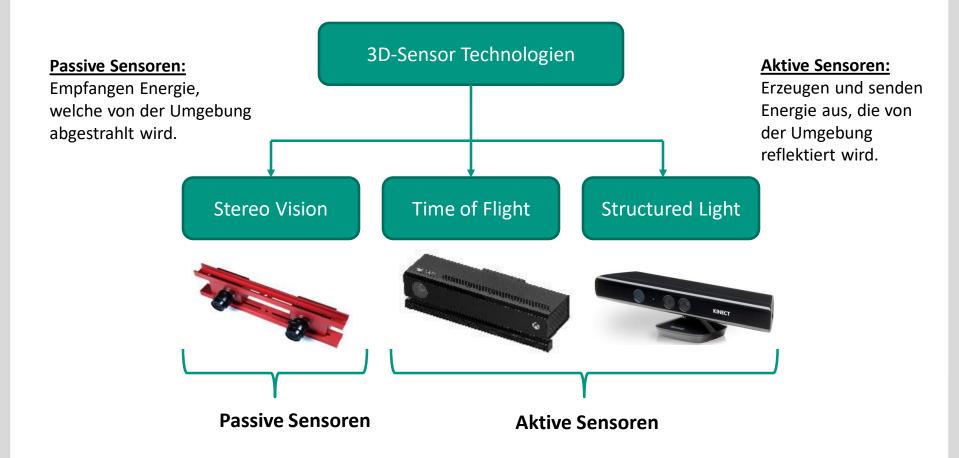
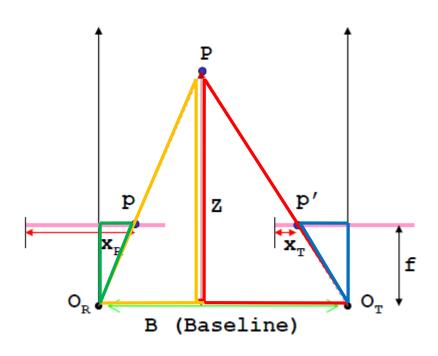
Tiefenkameras



Stereo Vision I



Brennweite f

Objektdistanz Z

Objektpunkt P

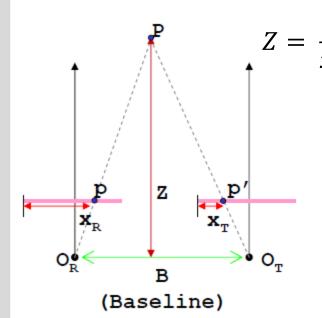
Bildpunkt $p = (x_R, y_R)^T, p' = (x_T, y_T)^T$

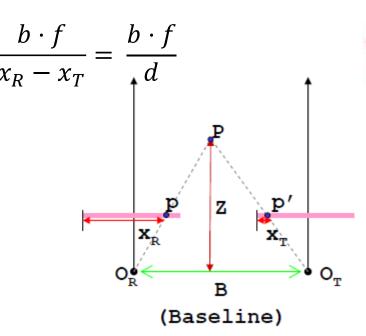
Linke Kamera

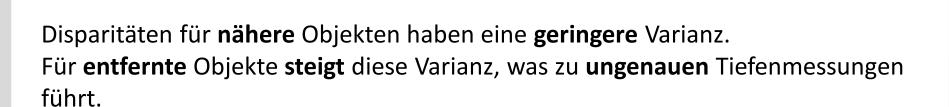
Rechte Kamera

$$Z = \frac{b \cdot f}{x_R - x_T} = \frac{b \cdot f}{d}$$

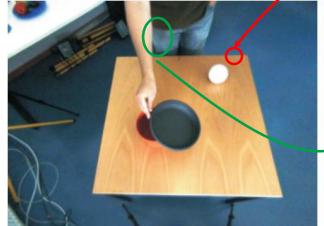
Stereo Vision II

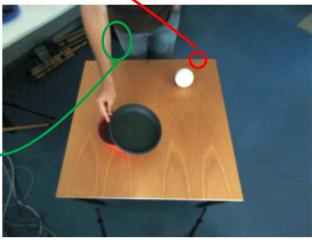






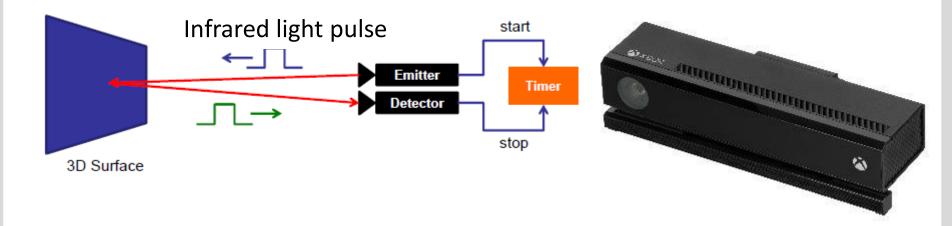
Stereo Vision III





- **O** Vorteile
 - Einstellbare Brennweiten/Baseline
 - Keine explizite Lichtquelle erforderlich
- Nachteile
- Mindestens zwei Kameras
- Korrespondezproblem bei homogenen Flächen
- Okklusion

Time of Flight

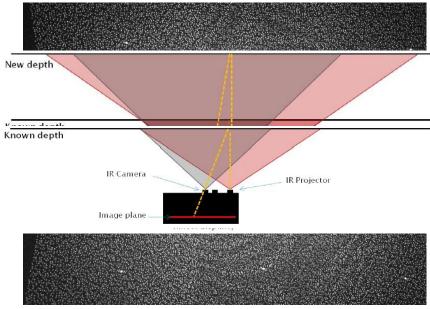


- Keine explizite Tiefenberechnung notwendig
- Hohe Bildrate (bis zu 100 fps)
- Robust gegenüber den meisten Oberflächen

- Niedrige Auflösung (512 x 424 px)
- Interferenz mit anderen Lichtquellen und Reflektionen

Structured Light





- **O** Vorteile
- Preiswert
- Kein Korrespondenzproblem auf homogenen Flächen

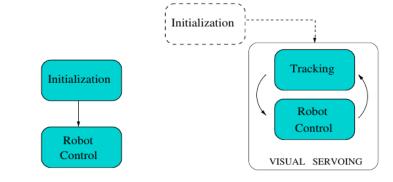
- Eingeschränkte Reichweite (2 m)
- Erfordert bestimmte Lichtverhältnisse (nur für den Innenraum geeignet)

Visual Servoing - Motiviation

Der Ausdruck Visual Servoing beschriebt Verfahren bei denen visuelle Eingabedaten genutzt werden, um die Bewegung eines Roboters zu steuern.

Motivation

- Modellfehler z.B. Kinematik
- Fehler bei der Ausführung
 z.B. fehlerhafte Positionierungen der Robotergelenke
- Überwachung der Szenez.B. Reaktion auf Kollisionen



open-loop Regelung

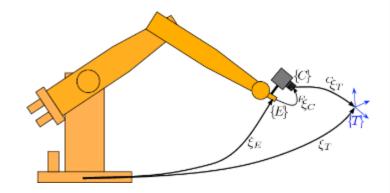
Visual Servoing

F Chaumette, S Hutchinson, *Visual servo control - Part I - Basic approaches*, IEEE Robotics & Automation Magazine 13 (4), 82-90, 2006

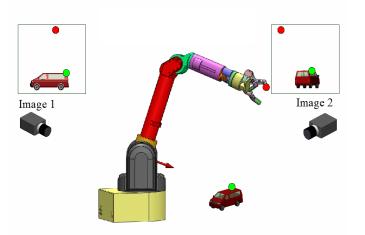
Danica Kragic and Henrik I Christensen, *Survey on Visual Servoing for Manipulation*, Techn. Report, KTH, 2002

Visual Servoing - Systemaufbau

- Kamera-in-Hand (eye-in-hand)
 - Kamera ist an dem Manipulator angebracht
 - Bewegungen des Manipulators beeinflussen die Pose der Kamera



- Externes (festes) Kamera System (eye-to-hand)
 - Externes Kamerasystem wird zur Beobachtung der Bewegung genutzt



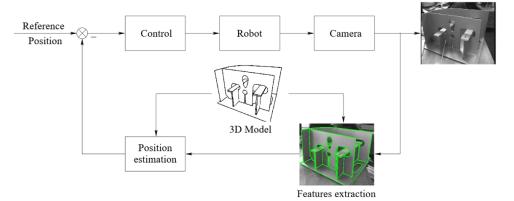
Visual Servoing - Verfahren

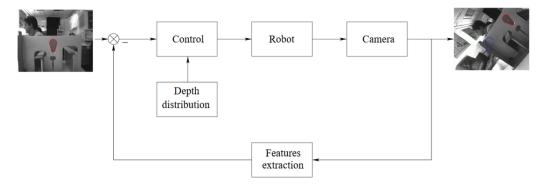
Positionsbasiertes Visual Servoing

- Position-based visual servo (PBVS)
- Einfache Regler
- 3D Rekonstruktion aufwendig

Bildbasiertes Visual Servoing

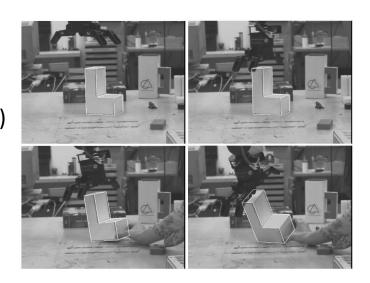
- Image-based visual servo (IBVS)
- Merkmalsextraktion einfach
- Komplexere Regelungsvorschriften
- Hybride Verfahren(z.B. 2,5D visual servo)

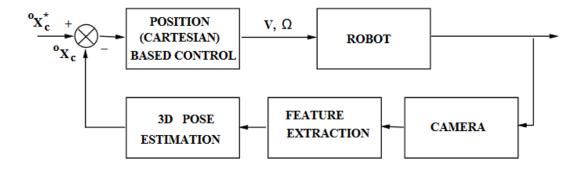




Positionsbasiertes Visual Servoing

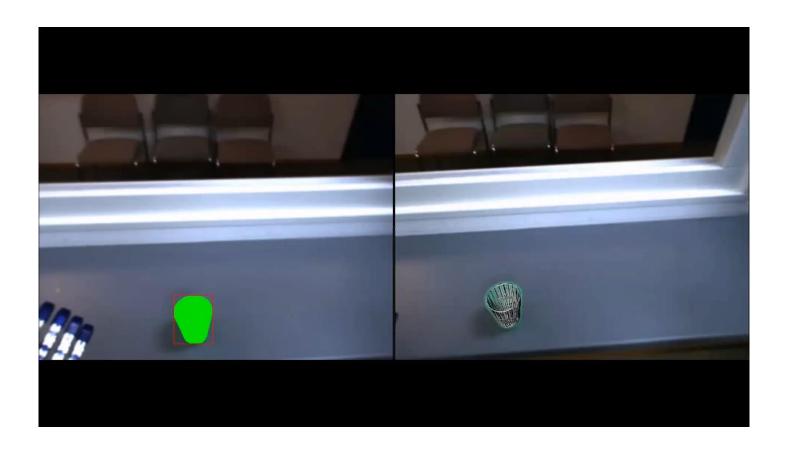
- \blacksquare Zielpose X_g ist vorgegeben
- Ablauf der Regelschleife
 - 3D Lage Schätzung: Aktuelle Pose X_c des Zielobjektes (bzw. Hand) wird aus Bildmerkmalen extrahiert
 - Regelvorgabe (kartesisch): Differenz $\Delta X = X_g - X_c$
 - \blacksquare Kartesischer Regler führt ΔX aus
 - Ziel erreicht: Distanz ΔX kleiner als Schwellwert





Positionsbasiertes Visual Servoing

Beispiel auf ARMAR-III



Ansatz

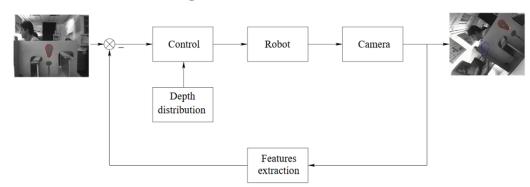
Die Bewegung des Manipulators ergibt sich aus der aktuellen und gewünschten Position von Bildmerkmalen

Bildmerkmale

Bildbverarbeitungsmethoden zur Extraktion von Bildmerkmalen

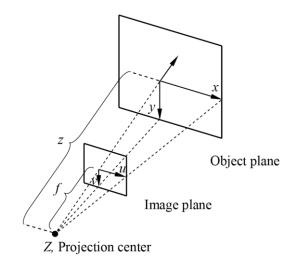
Regelung

Geschwindigkeitsvorgaben werden direkt aus der aktuellen und gewünschten Stellung der Bildmerkmale erzeugt



Bildmerkmal

Ein Bildmerkmal $s = (u, v)^T$ ist die Projektion eines 3D Punktes $P = (x, y, z)^T$ im Kamerabild.



Fehlerfunktion

- Aktuelle Position der Merkmale im Kamerabild zum Zeitpunkt t: s(t)
- Gewünschte Zielposition der Merkmale im Kamerabild (konstant): s^*
- Fehler: $e(t) = s(t) s^*$

Interaction Matrix / Image Jacobian

Die interaction matrix L beschreibt die Beziehung zwischen der Bewegung eines Bildmerkmals $s=(u,v)^T$ und des entsprechenden 3D Punktes $P=(x,y,z)^T$

$$\dot{s} = L\dot{P}$$

Aus den Projektionsvorschriften (Lochkameramodell) ergibt sich

$$L = \begin{pmatrix} \frac{f}{z} & 0 & -\frac{u}{z} & -\frac{uv}{f} & \frac{f^2 + u^2}{f} & -v \\ 0 & \frac{f}{z} & -\frac{v}{z} & -\frac{f^2 + v^2}{f} & \frac{uv}{f} & u \end{pmatrix}$$

Invertierung der Interaction Matrix

- Distanz z wird geschätzt
- Mehrere Merkmale werden beobachtet (mind. 3)
- Annahme: Kamera-In-Hand System
 Bewegung der 3D Punkte korrespondiert mit Bewegung der Kamera (Geschwindigkeit der Kamera $v_{\rm C}$)
- Daraus folgt:

$$\dot{e} = Lv_C$$

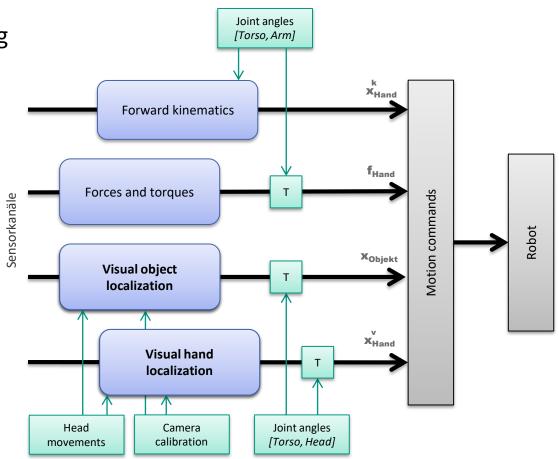
• Mit $\dot{e} = -\lambda e$ ergibt sich

$$v_C = -\lambda L^+ e$$

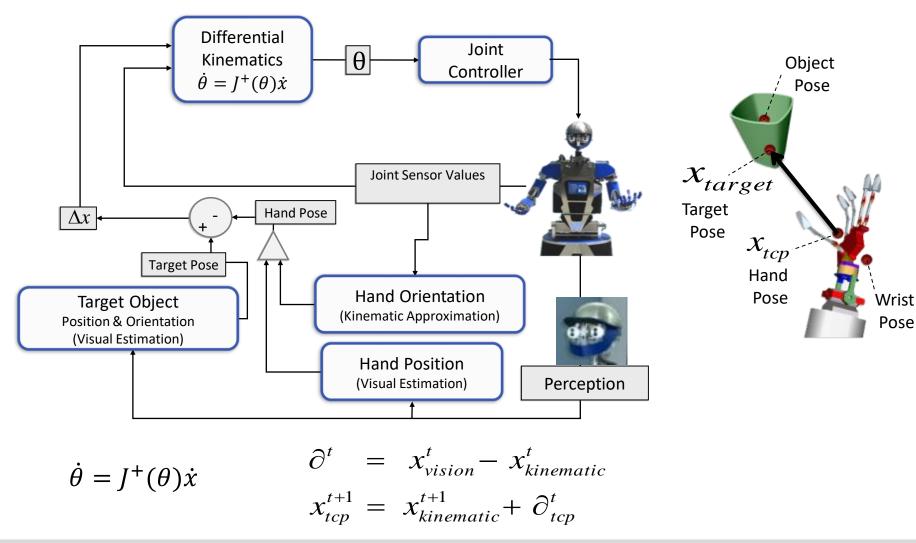
Hierbei ist L^+ die Pseudoinverse von L

Visual Servoing für ARMAR-III

- Ausführung von Greif und Manipulationsaufgaben
- Bild-basiertes Visual Servoing
 - Modellwissen
 - Objektlokalisierung
 - Handlokalisierung
- Sensoren
 - Kraft/Kontakt
 - Kameras
 - Interne Sensoren



Positionsbasiertes Visual Servoing auf ARMAR-III



Ausführung von Manipulationsaufgaben

Scene **Sensor-based Grasping Task Motion Planning** Representation **Execution**

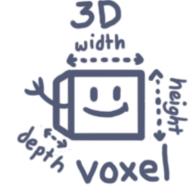
Point Clouds

■ Eine Punktwolke ist eine diskrete Menge von 3D-Punkten mit einem festen Koordinaten System.

VS.

Pixel = Picture Elements

2D Bild



Voxel = Volumetric Pixel



3D Punktwolke

Point Clouds

- Punktwolke $P = \{(X, C) | X \in \mathbb{R}^3, C \in [0 ... 255]^3 \subset \mathbb{N}_0^3 \}$
 - X = (x, y, z) Ortsinformation
 - C = (r, g, b) Farbinformation
 - Es können weitere (Sensor-)informationen abgespeichert werden
- Zwei verschiedene Arten der Repräsentation
 - Organisierte Punktwolke (2D Array Format, Größe muss vorab bekannt sein)
 - Unorganisierte Punktwolke (Vector Format)

Normalenschätzung in 3D Punktwolken

Ziel:

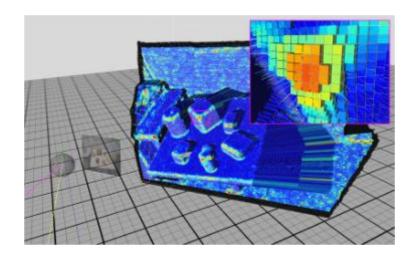
- Zusätzliche Oberflächeninformation durch Einbeziehung von lokalen Nachbarpunkten
- Grundlage für weiterführende Algorithmen
 - Segmentierung
 - Deskriptoren
 - Objekterkennung
 - Oberflächenmodellierung

Normalenschätzung in 3D Punktwolken

- PCA-basierter Ansatz
- Erstelle die Kovarianzmatrix C der k-Punktnachbarschaft für jeden Punkt p

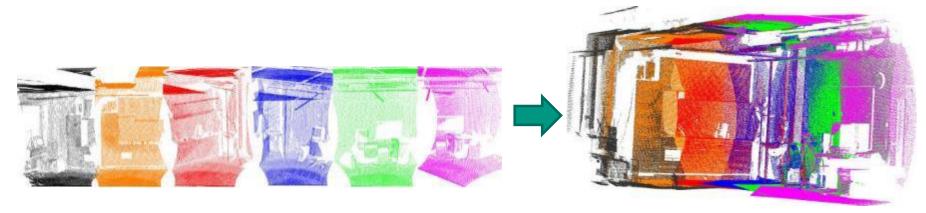
$$C = rac{1}{k} \sum_{1}^{k} (p_i - \bar{p}) \cdot (p_i - \bar{p})^T$$
 p_i
 p_i
 p_i
Mittelpunkt aller k Nachbarn

- Bestimme die Eigenwerte und Eigenvektoren von C
 - Hauptkomponentenanalyse (Principle Component Analysis, PCA)
 - Eigenvektor zu kleinstem
 Eigenwert korrespondiert mit der
 Normalen



Registrierung von Punktwolken

- Registrierung: Zusammenführen von Punktwolken, welche das gleiche Objekt aus unterschiedlichen Ansichten beschreibt
- Überführung in ein übergeordnetes Koordinatensystem (z.B. Weltkoordinatensystem)
- Extrinsische Kalibrierung der Kameras erforderlich



Punktwolken eines Raumes aus unterschiedlichen Perspektiven

Registrierte Punktwolke

Iterative Closest Point

- Iterative Closest Point (ICP) ist ein gängiger Algorithmus für die Registrierung zweier Mengen A, B mit a priori unbekannter Zuordnung (Besl und McKay, 1992)
- Beispiel: Registrierung zweier 3D Punktwolken
 - Für jede Iteration k gilt:
 - Für jeden Punkt a_i aus A suche Punkt b_i aus B, der a_i am nächsten liegt
 - Berechne eine Transformation T_k so dass D_k minimal wird, z.B. mit [Horn, 1987]:

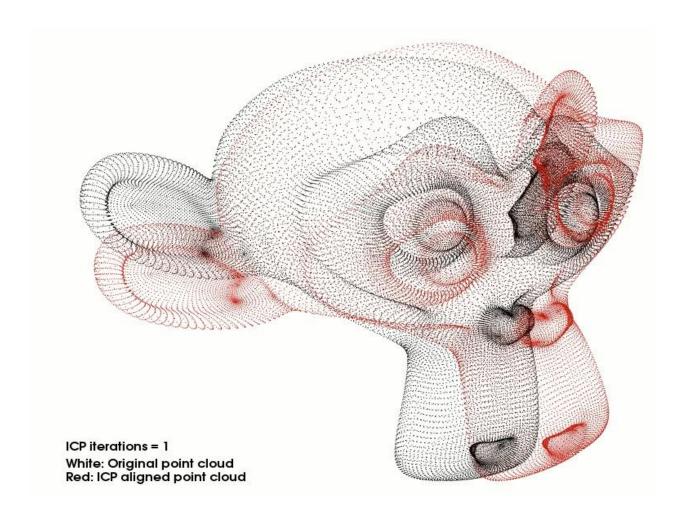
$$D_k = \sum_i ||a_i| - T_k \cdot b_i||^2$$

- lacksquare D_k Kombiniert Translation und Rotation
- Wende Transformation T_k auf alle Punkte aus B an (Update)
- Abbruchkriterien:
 - Schwellwert für $D_{k-1} D_k$
 - Maximale Anzahl an Iterationen erreicht

Iterative Closest Point II

- Minimiert die "Distanz" zwischen zwei Punktwolken
- Sehr gut geeignet für die Rekonstruktion in 2D und 3D
- Vorteile
 - Algorithmus für Punkte, Normalenvektoren und andere Darstellungsformen anwendbar
 - Nur einfache mathematische Operationen notwendig
 - Schnelles Registrierungsergebnis
- Nachteile
 - Symmetrische Objekte können nicht ohne weiteres registriert werden
 - Konvergenz in ein lokales Minimum möglich
 - Überlappung der Punktwolken erforderlich

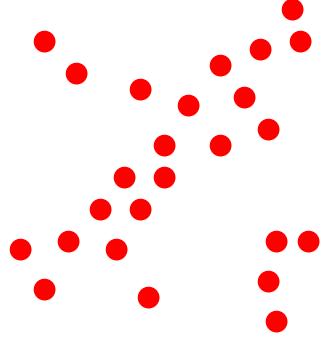
Iterative Closest Point III



- RANSAC ist eine iterative Methode zur Schätzung von Modellparametern aus Datenpunkten
- RANSAC ist ein **nicht-deterministischer** Algorithmus
- Robust gegenüber Ausreißern und fehlenden Datenpunkten
- Anwendung in der Bildverarbeitung
 - Schätzung von Linien in 2D Bildern
 - Schätzung von Ebenen und anderen Primitiven in 3D Punktwolken

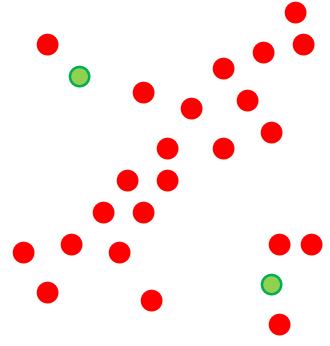
- Der RANSAC Algorithmus:
 - Wähle zufällig die minimale Anzahl an Punkten aus, die nötig ist um die Modellparameter zu berechnen
 - 2 Punkte für Linien in 2D
 - 3 Punkte für Ebenen in 3D
 - 2. Schätze ein Modell aus dem ausgewählten Datensatz
 - 3. Bewertung der Modellschätzung:
 Berechne die Teilmenge der Datenpunkte (*Inliers*), deren Abstand zum
 Modell kleiner ist als ein vordefinierter Schwellwert
 - 4. Wiederhole 1-3 bis das Modell mit den meisten Inliers gefunden wird

- Beispiel:
 - Line fitting in 2D Datenpunkte



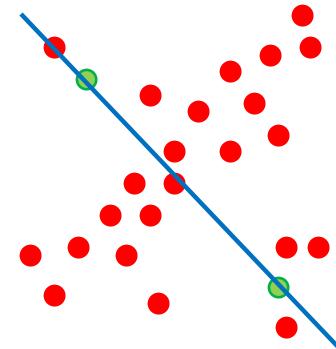
- RANSAC Algorithmus:
 - 1. Wähle zufällig die minimale Anzahl an Punkten aus, die nötig ist um die Modellparameter zu berechnen
 - 2. Schätzung des Modell aus dem ausgewählten Datensatz
 - 3. Bewertung der Modellschätzung
 - 4. Wiederhole 1-3 bis das Modell mit den meisten Inliers gefunden wird

- Beispiel:
 - Line fitting in 2D Datenpunkte



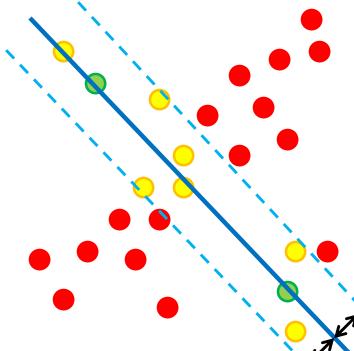
- RANSAC Algorithmus:
 - 1. Wähle zufällig die minimale Anzahl an Punkten aus, die nötig ist um die Modellparameter zu berechnen
 - 2. Schätzung des Modell aus dem ausgewählten Datensatz
 - 3. Bewertung der Modellschätzung
 - 4. Wiederhole 1-3 bis das Modell mit den meisten Inliers gefunden wird

- Beispiel:
 - Line fitting in 2D Datenpunkte



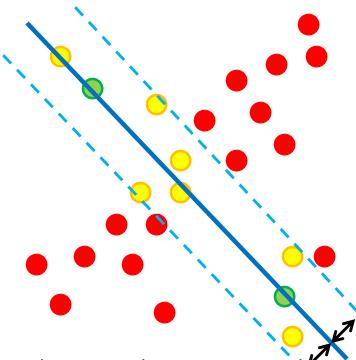
- RANSAC Algorithmus:
 - 1. Wähle zufällig die minimale Anzahl an Punkten aus, die nötig ist um die Modellparameter zu berechnen
 - 2. Schätzung des Modell aus dem ausgewählten Datensatz
 - 3. Bewertung der Modellschätzung
 - 4. Wiederhole 1-3 bis das Modell mit den meisten Inliers gefunden wird

- Beispiel:
 - Line fitting in 2D Datenpunkte



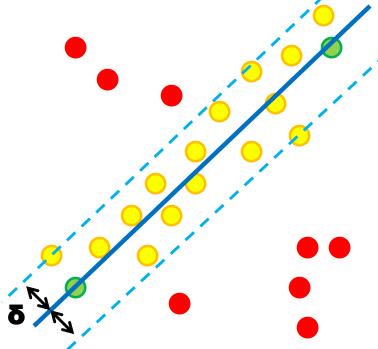
- RANSAC Algorithmus:
 - Wähle zufällig die minimale Anzahl an Punkten aus, die nötig ist um die Modellparameter zu berechnen
 - 2. Schätzung des Modell aus dem ausgewählten Datensatz
 - 3. Bewertung der Modellschätzung
 - 4. Wiederhole 1-3 bis das Modell mit den meisten Inliers gefunden wird

- Beispiel:
 - Line fitting in 2D Datenpunkte



- RANSAC Algorithmus:
 - Wähle zufällig die minimale Anzahl an Punkten aus, die nötig ist um die Modellparameter zu berechnen
 - 2. Schätzung des Modell aus dem ausgewählten Datensatz
 - 3. Bewertung der Modellschätzung
 - 4. Wiederhole 1-3 bis das Modell mit den meisten Inliers gefunden wird

- Beispiel:
 - Line fitting in 2D Datenpunkte

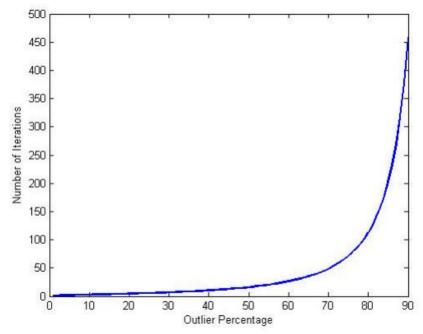


- RANSAC Algorithmus:
 - 1. Wähle zufällig die minimale Anzahl an Punkten aus, die nötig ist um die Modellparameter zu berechnen
 - 2. Schätzung des Modell aus dem ausgewählten Datensatz
 - 3. Bewertung der Modellschätzung
 - 4. Wiederhole 1-3 bis das Modell mit den meisten Inliers gefunden wird

Die voraussichtliche **Anzahl an Iterationen** k damit der Algorithmus mit der **Wahrscheinlichkeit** P erfolgreich terminiert kann wie folgt berechnet werden:

- Wahrscheinlichkeit für einen Inlier: $P(inlier) \equiv w$ (w = Anzahl der Inlier/Gesamtzahl der Samples)
- Wahrscheinlichkeit ein Inlier-Modell zu ziehen: $P(subset\ with\ no\ outlier) \equiv w^n$
- Wahrscheinlichkeit ein Outlier-Modell zu ziehen: $P(subset \ with \ outliers) \equiv 1 - w^n$
- Wahrscheinlichkeit in k Iterationen ein Outlier-Modell zu ziehen: $P(k \text{ subsets with outliers}) \equiv (1 w^n)^k$
- Wahrscheinlichkeit für einen erfolglosen Durchlauf : $P(fail) \equiv (1 w^n)^k$
- Wahrscheinlichkeit für einen erfolgreichen Durchlauf: $P(success) \equiv 1 (1 w^n)^k$
- Voraussichtliche Anzahl an Iterationen : $\Rightarrow k = \frac{\log(1 P(success))}{\log(1 w^n)}$

RANSAC benötigt mehr Iterationen im Fall von vielen Outlieren!



- Voraussichtliche Anzahl an Iterationen: $\Rightarrow k = \frac{\log(1-P(success))}{\log(1-w^n)}$
- lacktriangle Minimale Sample Anzahl n muss vorher definiert sein!
- P(success) muss hoch angesetzt werden (d.h. $\geq 95\%$)

RANSAC (Random Sample Consensus)

Vorteile:

- Simpel, allgemein und einfach zu implementieren
- Robuste Modellschätzung für Daten mit wenigen Ausreißern
- Vielseitig anwendbar

Nachteile:

- Nicht-deterministisch
- Viele Parameter
- Trade-off zwischen Genauigkeit und Laufzeit (benötigt viele Iterationen)
- Nicht anwendbar wenn das Verhältnis Inliers/Outliers zu klein ist

Das SLAM Problem:

Wie kann ein Roboter in einer unbekannten Umgebung **navigieren** und dabei eine Karte von seiner Umgebung **erstellen** und auch **aktualisieren**?

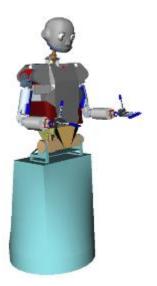
- SLAM bedeutet die Schätzung der aktuellen Roboterpose als auch der Karte der Umgebung zur gleichen Zeit.
- SLAM wird benötigt
 - um voll autonome Roboter zu bauen
 - um in einer unbekannten Umgebung zu überleben
 - um zu wissen wo sich der Roboter gerade befindet
 - um die Navigation ohne externe Positionsbestimmung (z.B. GPS) zu ermöglichen.

- Es entsteht ein Henne-Ei-Problem. Wir brauchen
 - eine Karte, um den Roboter zu lokalisieren
 (aber SLAM hat kein Vorwissen über die Umgebung)
 - und eine genaue Schätzung der Position, um eine Karte zu erstellen
- Begriffe:
 - Lokalisierung: Schätzen der Roboterposition bei gegebener Karte
 - Kartierung: Aus einer Menge von Positionen eine Karte ableiten
 - SLAM: Gleichzeitige Lokalisierung und Kartierung

- Lösung: Position von Kamera und Roboter während einer Bewegung verfolgen
- Deshalb braucht der Roboter Features, die er zuordnen und verfolgen kann
 - SLAM wählt Szenenfeatures als Orientierungspunkte
 - Visuelle Features: Punkte, Ecken, Kanten, Texturen, Oberflächen
 - Hinweis: Features müssen unterscheidbar und deskriptiv sein (Invariant gegenüber Standpunktwechsel)

- Wie funktioniert SLAM?
 - Interne Repräsentation für:
 - Position der Orientierungspunkte
 - Parameter der Kamera

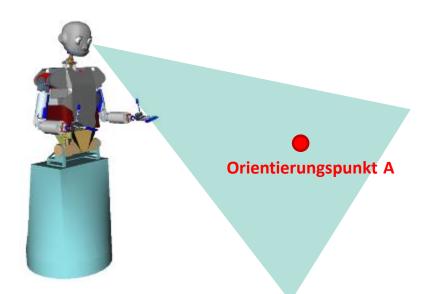
- In jedem Frame:
 - Vorhersage, wie viel sich der Roboter bewegt hat



Orientierungspunkt A

- Wie funktioniert SLAM?
 - Interne Repräsentation für:
 - Position der Orientierungspunkte
 - Parameter der Kamera

- In jedem Frame:
 - Vorhersage, wie viel sich der Roboter bewegt hat
 - Neue Orientierungspunkte aufnehmen

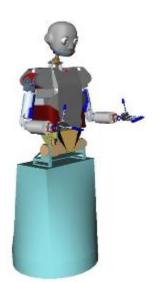


- Wie funktioniert SLAM?
 - Interne Repräsentation für:
 - Position der Orientierungspunkte
 - Parameter der Kamera

Orientierungspunkt C

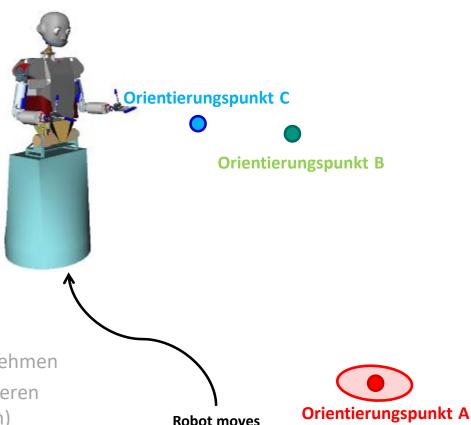
Orientierungspunkt B

- In jedem Frame:
 - Vorhersage, wie viel sich der Roboter bewegt hat
 - Neue Orientierungspunkte aufnehmen
 - Interne Repräsentation aktualisieren (Messungenauigkeiten beachten)



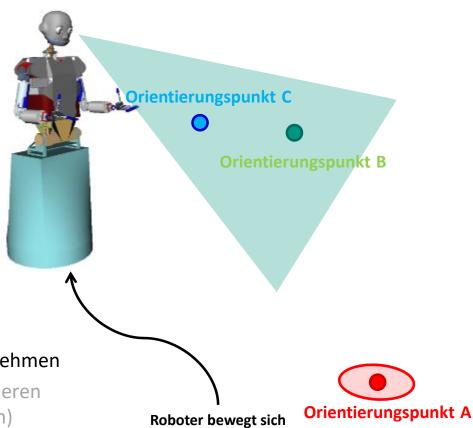
- Wie funktioniert SLAM?
 - Interne Repräsentation für:
 - Position der Orientierungspunkt
 - Parameter der Kamera

- In jedem Frame:
 - Vorhersage, wie viel sich der Roboter bewegt hat
 - Neue Orientierungspunkte aufnehmen
 - Interne Repräsentation aktualisieren (Messungenauigkeiten beachten)



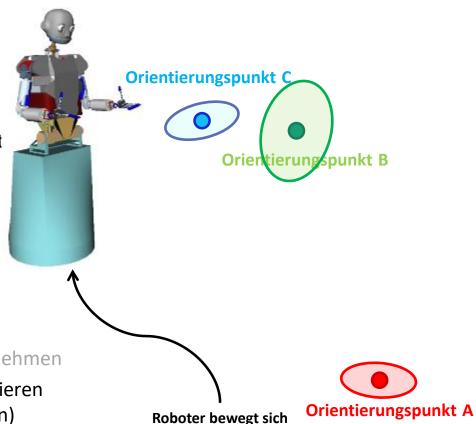
- Wie funktioniert SLAM?
 - Interne Repräsentation für:
 - Position der Orientierungspunkt
 - Parameter der Kamera

- In jedem Frame:
 - Vorhersage, wie viel sich der Roboter bewegt hat
 - Neue Orientierungspunkte aufnehmen
 - Interne Repräsentation aktualisieren (Messungenauigkeiten beachten)



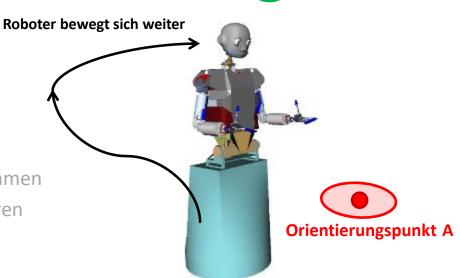
- Wie funktioniert SLAM?
 - Interne Repräsentation für:
 - Position der Orientierungspunkt
 - Parameter der Kamera

- In jedem Frame:
 - Vorhersage, wie viel sich der Roboter bewegt hat
 - Neue Orientierungspunkte aufnehmen
 - Interne Repräsentation aktualisieren (Messungenauigkeiten beachten)



- Wie funktioniert SLAM?
 - Interne Repräsentation für:
 - Position der Orientierungspunkte
 - Parameter der Kamera

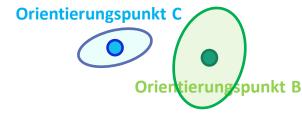
- Vorhersage, wie viel sich der Roboter bewegt hat
- Neue Orientierungspunkte aufnehmen
- Interne Repräsentation aktualisieren (Messungenauigkeiten beachten)

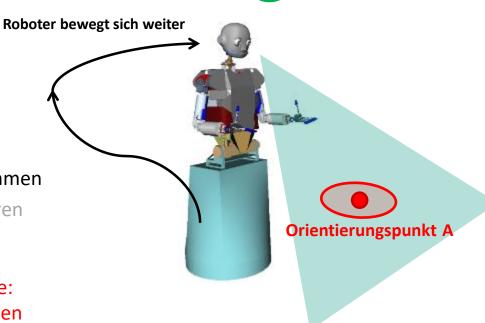


- Wie funktioniert SLAM?
 - Interne Repräsentation für:
 - Position der Orientierungspunkte
 - Parameter der Kamera

- Vorhersage, wie viel sich der Roboter bewegt hat
- Neue Orientierungspunkte aufnehmen
- Interne Repräsentation aktualisieren (Messungenauigkeiten beachten)

Roboter sieht bekanntes Feature: Es kann eine Zuordnung stattfinden





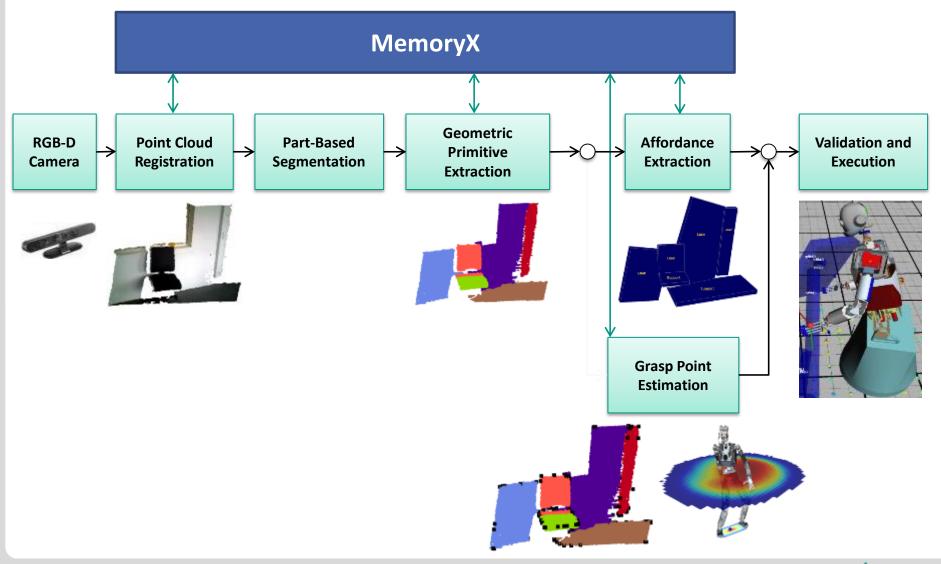
COMPUTER VISION @H2T

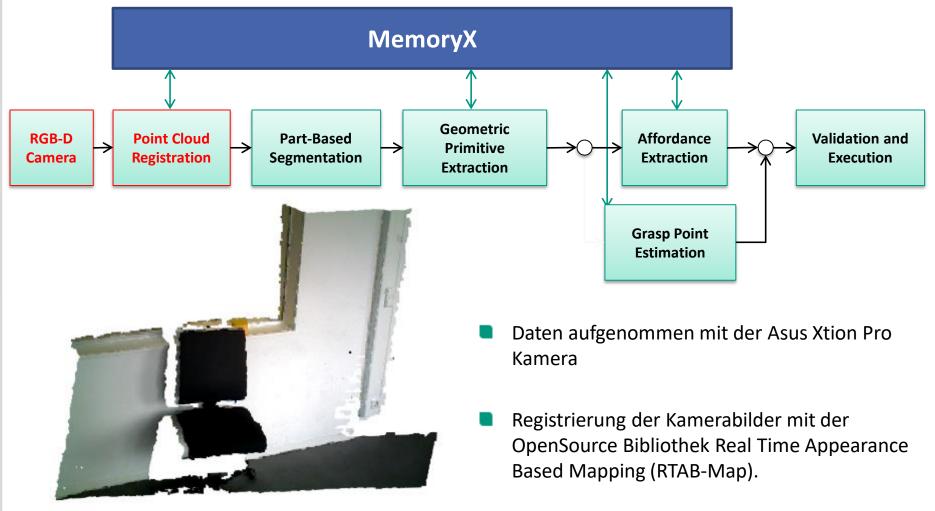
Beispiel: Perceptual Pipeline

- SLAM
- RANSAC
- Integriert in das Roboter-Softwareframework ArmarX (späteres Kapitel)

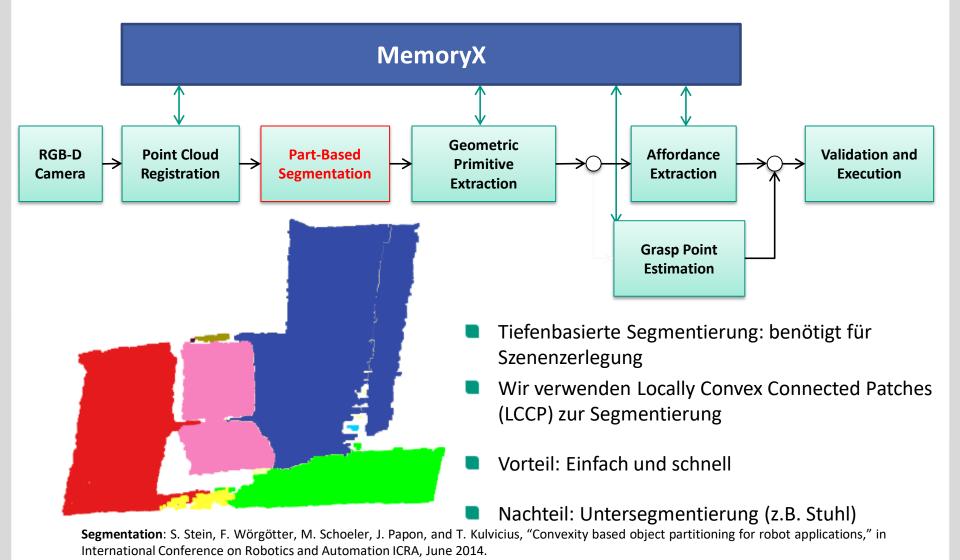
Loco-Manipulation Affordances

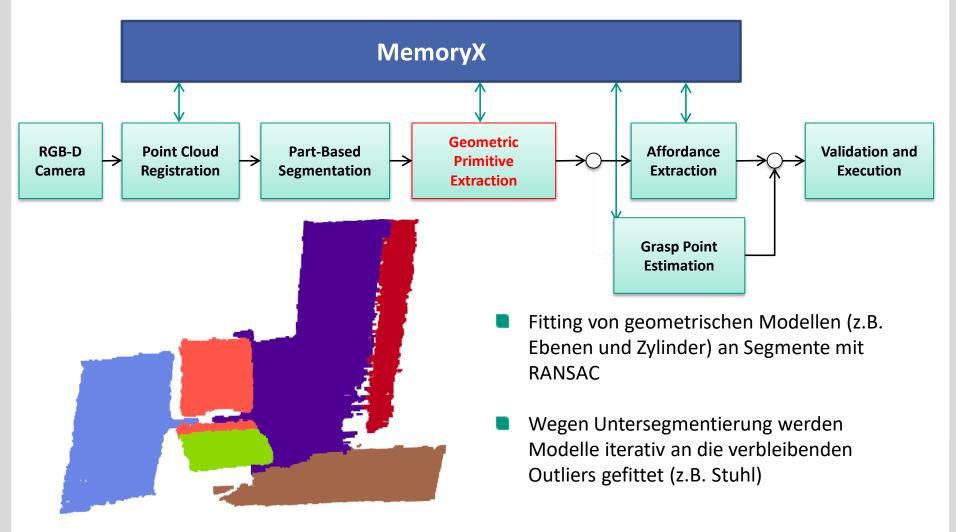
Kaiser P., Grotz M. Aksoy E.E., Do M. Vahrenkamp N. Asfour T., "Validation of Whole-Body Loco-Manipulation Affordances for Pushability and Liftability", In IEEE-RAS International Conference on Humanoid Robots 2015.



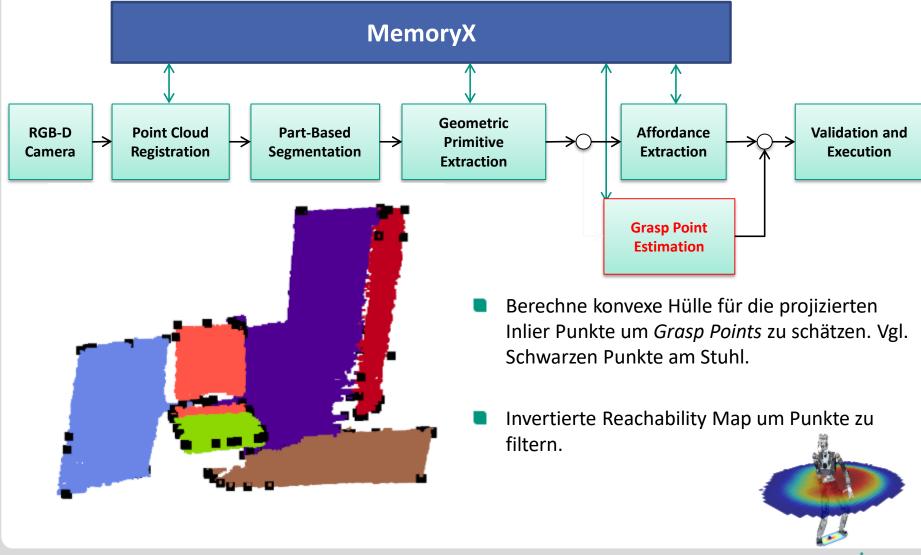


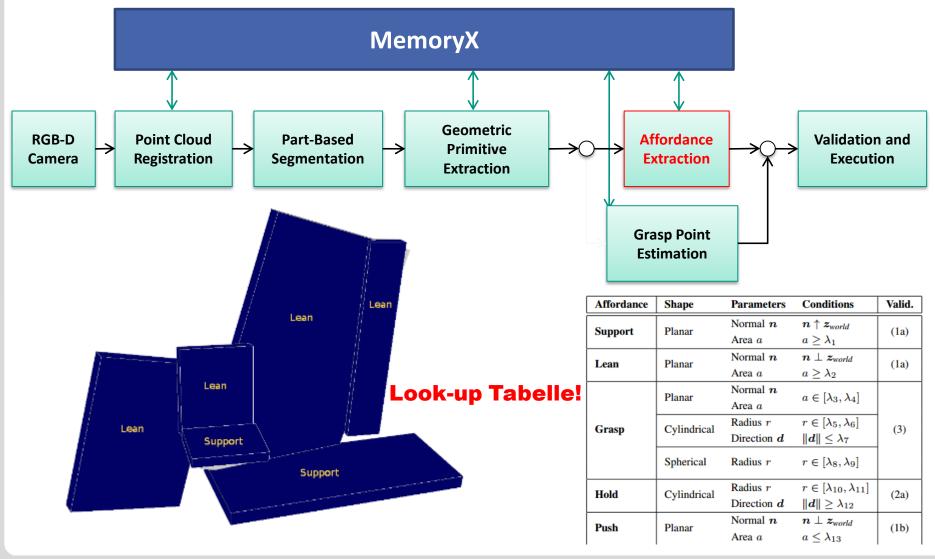
RTAB-Map: M. Labbe and F. Michaud, "Online global loop closure detection for large-scale multi-session graph-based slam," in IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 2661–2666, IEEE, 2014.





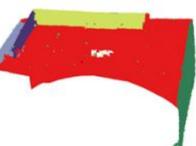
PCL: R. B. Rusu and S. Cousins, "3d is here: Point cloud library (pcl)," in International Conference on Robotics and Automation, 2011.



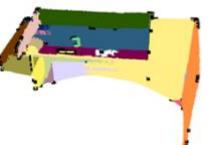


Registered Point Clouds

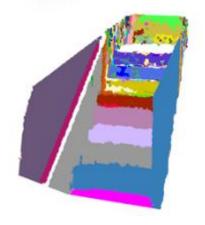
Segmented Point Cloud

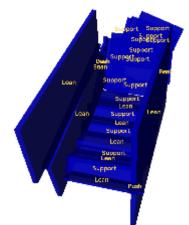


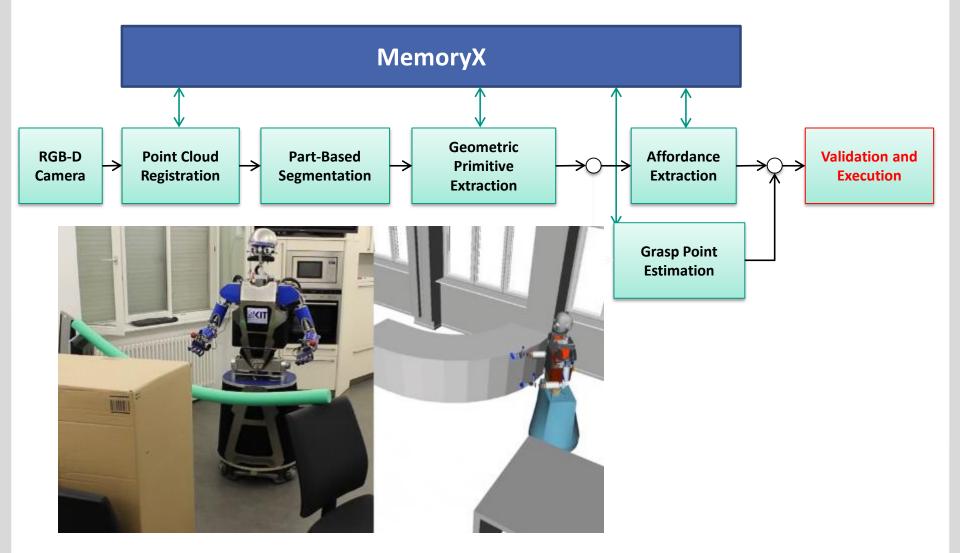
Primitive & Grasp Points



Affordances







Validation of Whole-Body Loco-Manipulation Affordances for Pushability and Liftability

Peter Kaiser, Markus Grotz, Eren E. Aksoy, Martin Do, Nikolaus Vahrenkamp and Tamim Asfour

Institute for Anthropomatics and Robotics - High Perfomance Humanoid Technologies Lab (H2T)

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association

www.kit.edu

Kaiser P., Grotz M. Aksoy E.E., Do M. Vahrenkamp N. Asfour T., "Validation of Whole-Body Loco-Manipulation Affordances for Pushability and Liftability", In IEEE-RAS International Conference on Humanoid Robots 2015.

Englische Begriffe

Deutsch	Englisch
Farbnuance	hue
Sättigung	saturation
Helligkeit	intensity/value
Hauptachse	principal axis
Hauptpunkt	principal point
Bildkoordinaten	image coordinates
Kamerakoordinatensystem	camera coordinates
Weltkoordinatensystem	world coordinate system
Schwellenwertverfahren	thresholding
Punktwolken	point clouds
Kartierung	mapping
Orientierungspunkt	landmark

